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Abstract

A ubiquitous issue in the realm of computer vision is the acquisition of labeled
data. In this work, we explore the potential for extracting image annotations
from raw social media data. We investigate a data set consisting of images with
the “#selfie” hashtag from the popular image hosting service Instagram and the
publicly available user information, likes, and comments associated with those
images. We propose a new method for extracting image “likabaility” labels for
binary classification using a predictive linear model that takes into account the
relationship between likes garnered, user followers, and number of hashtags used
in an image uploaded to Instagram. Finally, we train a modified version of the
famous VGG-16 model to classify this data set, achieving an accuracy of 72%. Our
results prove that community response is affected by image content, and that the
visual features of likable content can be learned.

1 Introduction

The selfie is a style of photography in which a person takes an photograph of him or herself, and
it is an extremely prevalent style of photograph on social media today. Due to its somewhat vain
undertones and immense popularity, many users of social media websites such as Facebook and
Google+ seek to frame the perfect selfie. Doing so rewards the user with followers and likes, which
can translate to an ego boost and even sponsorship from fashionable brands.

The website Instagram is one such social media platform, where the focus is on user-generated image
content. One of Instagram’s key features is the “hashtag” functionality, where users can tag their
images using an octothorpe (#) and a tag name (e.g. #SpringBreak). Users can search for images by
hashtag, thus the feature helps to organize the sheer number of photos Instagram’s 300 million daily
users upload onto the site [1]. Users can opt to “follow” other users, which indicates that they’d like
to be notified when the user they’re following uploads an image. Additionally, for public images, any
user of Instagram can “like” that image, indicating their approval.

We believe that success in understanding the features present in well-liked selfies provides valuable
insight into the way that humans interact with image-based social media, and that an understanding
of these features can provide benefit to social scientists in their attempt to understand why users
of social media like certain images more than others. In this work, we undertake not only the task
of training a convolutional neural network to recognizes likable selfies, but also attempt to provide
insight into the visual process that stimulates affects the human response to image content on social
media.
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2 Related Work

In recent years, there have been many attempts to leverage the tremendous amount of information
available on social media to gain insights into decidedly human tasks like facial recognition and
visual sentiment analysis.

Nguyen et al. presented their analysis of micro-videos – five to ten minute long videos which are
prevalent on social media. These videos utilize camera viewpoints uncommon to traditional film
making, which the authors aptly name “egocentric” and “self-facing.” For reasons similar to our
own approach, these videos were attractive to the researchers due to their already being tagged by
users of social media. Campos et al. applied the established VGG-19 model to the task of predicting
both these tags and the novel camera angles used, and were able to achieve accuracy far greater than
random guessing for both.

Most closely related to our approach, Karpathy, now a research scientist for OpenAI who at the time
of his selfie research was pursuing his PhD in machine learning at Stanford, also attempted to predict
the quality of Instagram selfies. His approach, which heavily influenced ours, scraped 5 million
month-old or older images from Instagram, generously removed outliers, sorted the photos based on
number of followers and classified them in groups of 100 photos split into top and bottom halves
by “likes.” He then trained a convolutional neural network on this labeled data set. In our approach,
we do not remove outliers and we do not bin our images, but we utilize a novel linear regression
controlling for followers and number of hashtags present to solve the same problem. Karpathy’s work
has garnered a lot of attention and respect, and has influenced at least one paper [5].

3 Dataset

Figure 1: A random selection of 12 images from our data set. These are images from the website
Instagram tagged with the hashtag #selfie, posted between November 8th and November 15th.

We have collected 486,149 images labeled with the hashtag #selfie scraped from the website Instagram.
These images have metadata associated with them including number of likes, number of comments,
date posted, caption, owner, etc. We utilized a technique of collecting only freshly-posted images
and revisiting the metadata for collection later to avoid issues with changes in macroscopic trends in
Instagram user behavior and issues resulting from some photos having had longer to accrue likes and
comments than others, regardless of their visual content.

After fresh images were collected over the course of a week, over the period of the following week we
revisited each image exactly 7 days after collection to update its metadata, meaning that each image
was given almost exactly the same amount of time to accrue likes and comments. Interestingly, 56,966
photos, or about 11.7% of our data set had been deleted by the time of updating. We speculate that
this deletion was due to users deciding that their selfie wasn’t performing well with respect to likes,
although it would be odd if one in nine selfies were deleted for this reason. Other possibilities include
full account deletion, network errors when attempting to access the images, or perhaps removal of the
photo by Instagram for breaking their terms of use policy.

During this update process, other than the metadata associated with the image, other information
directly relevant to the image were also updated, including user information and comments. Of the
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429,183 remaining images, we have data on 311,475 unique users, each having posted at least one
image in our dataset. Information about users include their name, number of followers, number of
people they are following and personal description. A massive 1,500,967 comments have been made
on images in our database, for an average of 3.5 comments per image. Comment data includes the
comment itself, time of posting, and name of the posting user. At the time of writing, our approach to
classification has not yet incorporated data from comments or image descriptions.

After a visual analysis of the data, we realized that a fair number of images weren’t selfies despite
being tagged as such. To rectify this, we utilized the facial recognition functionality of the open
source tool dlib [6]. Dlib recognized faces in 232,971 images. We opted to only continue using
images that contain exactly one face, which totaled 200,545 images.

3.1 Label Creation

Intuitively, we want our labels to capture the likability of a selfie as a score, but extracting this
information from the metadata we collected poses a serious challenge. The number of likes that a
selfie garners is influenced not just by the content of the image, but the number of followers the user
has, the number of hashtags associated with the image, and other unaccountable factors such as the
selfie being posted on external websites. Our goal is to isolate the influence the image content has on
the number of likes, controlling for all other factors.

Our approach utilizes a linear model of the following form

log10(1 + Likes) ∼ log10(1 + Followers) +NumberOfHashtags (1)

Figure 2 plots this relationship, as exhibited by the metadata of the collected images. We think it
is logical to assume that the noise in this data can be explained by the content of the image itself.
Therefore, we subtract the number of likes this linear model predicts an image would receive from the
number of likes recorded in the metadata. This difference represents our score metric. Images that
outperform our prediction receive a high score and images that underperform our prediction receive a
low score.

After initial testing and unsuccessful training, we determined that it would be best to subset our data
even further, by isolating images with scores in the top and bottom 10% of the overall distribution.
These images were given the class names “Top” and “Bottom” respectively, and rather than attempting
to predict the image’s score, we instead predict on this binary classification. This puts our dataset
size at 40,109.

Figure 2: Scatter plot visualizing the relationship between Log(Followers) and Log(Likes). We
propose that the distance between the predicted value and actual value is explained by the features in
the image itself
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4 Predicting Likability of Instagram Selfies

4.1 Network Architecture

Due to the limitations of our dataset’s size and chaotic nature of our labels, we elected to build
all of our models on the existing VGG-16 ConvNet architecture presented in [7]. This allowed
us to utilize the model’s pretrained weights, which were trained on the ImageNet dataset [8]. We
evaluated two different architectures in which to apply the pretrained VGG-16 model to our binary
classification task, utilizing several different SGD optimization strategies. The first model uses only
the convolutional portion of the VGG-16 network fed into a single randomly-initialized logistic
classification layer, while the second model uses all of the VGG-16 layers except for the final softmax
classification layer, which we replaced with a randomly-initialized logistic classification layer.

For all random initialization of weights, we used the default configuration of the Keras deep learning
library [9] which samples from a uniform distribution normalized to layer size under the scheme
proposed by Glorot and Bengio in [10].

5 Experiments

5.1 Experiment Setup

Training and Test Sets As described in 3, we collected 490K images from Instragram with #selfie.
We then performed facial recognition using dlib [6] to filter out images without exactly one person in
them, resulting in a dataset of 200K images. Finally to make the difference between the two classes
of images marked, we chose only those images whose score labels are in the top or bottom decile. A
quarter of these images were held out of training to serve as a validation set.

Training Pipeline For the training of the proposed convolutional networks described in 4.1, we
used all 30k images in the training set with random horizontal flips. We were sure to resize all images
to 224x224 pixels and normalize their pixel weights to the original ImageNet mean, which was used
by [7] to train the VGG-16 network .

All training was performed via mini-batch stochastic gradient descent with batch size of 32 and a
global learning rate of 0.001. We experimented with several training approaches including the freezing
of pretrained convolutional layers and the addition of l2 regularization, dropout, and momentum as
configured in the original pretraining of the underpinning VGG-16 network 5.2.

Our model was trained using the Keras deep learning library [9] on a AWS P2 instance equipped with
an Nvidia K40 GPU. We trained in experiments consisting of 5-20 epochs of the training set, with the
maximum validation accuracy usually observed well before training was terminated (termination was
triggered by various conservative saturation rules we tested).

5.2 Configuration of Loss and Gradient Descent

For our initial benchmarking of our selected architectures, we performed three tests:

(A) SGD optimization of the frozen pretrained VGG-16 convolutional layers + unfrozen logistic
classification layer (i.e. logistic classification of deep features)

(B) End-to-end SGD optimization of pretrained VGG-16 convolutional layers + logistic classifi-
cation layer

(C) End-to-end SGD optimization of full pretrained VGG-16 model with final layer replaced by
logistic classification layer

As can be seen in Figure 3, both of the end-to-end configurations suffered from a precipitous drop
in validation accuracy after rapidly peaking. This drop was subsequently curtailed by the accuracy
saturation termination rule we employed to eliminate needless computation. The results in Figure
4, which are consistent with the trend in training accuracy of configuration B as well, suggest that
overfitting was the cause of this decrease in accuracy.

To combat this issue, we created a new configuration:
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Figure 3: Validation accuracy over training time benchmark evaluations

(D) Architecture identical to configuration C with end-to-end SGD in the configuration used to
train VGG-16 [7] for the ImageNet competition [8] (momentum = 0.9, dropout = 0.5 and
l2-regularization = 0.0005 on the first two fully-connected layers)

Figure 4: Test accuracy vs. validation accuracy for configurations with and without dropout and l2
regularization

As we can see from Figure 4, these regularization steps eliminated the drastic drop in validation
accuracy witnessed in the training of configuration C while maintaining a high overall validation
accuracy. We also see that it took more than twice as many epochs for the training accuracy to
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reach 95%, which supports our belief that overfitting is the cause of the drastic dropoff in validation
accuracy witnessed in training configurations B and C.

5.3 Results and Analysis

One of the goals of this work was to be able to automatically generate labels from social media
metadata. Our assumption while creating our score was that once the influence of metadata metrics
were accounted for, the likability of an image can be learned from visual cues in the image itself.
While our training suffered from overfitting and only achieved a maximum of 72% validation accuracy,
the overall performance is comparable to human performance, as can be seen from Table 1 and Table
2. Table 2 was populated via the following experimental procedure: participants were allowed to
freely examine a large sample of labeled images and then were asked to classify a different set of
unlabeled images.

Table 1: Benchmark Training Results
Configuration Max Validation Acc. Epochs Trained Final Validation Acc.

A 0.678814 12 0.66873
B 0.691627 9 0.659145
C 0.710430 8 0.687167
D 0.719316 20 0.681343

Table 2: Human attempts at selfie categorization
Test Number Participant Number of Images Classified Accuracy

1 Person A 50 0.61
2 Person B 50 0.76

Due to the saturation rules used, not all models were run for the same number of epochs. Nonetheless,
configurations C and D achieve a peak validation accuracy of approximately 72% before slowly
sliding downward and ending at 68% at termination. This suggests that training the VGG model
end-to-end allows the model to learn a slightly richer representation of the underlying visual cues
that influence likability.

(a) Images our model classified as “Top” with borders showing ground truth (blue is “Top,” red is “Bottom”)

(b) Images our model classified as “Bottom” with borders showing ground truth (blue is “Top,” red is “Bottom”)

Figure 5: From a random subset of 1000 images from the original dataset, our model was most
confident that these were of the class (a) “Top” (b) “Bottom”

Finally, we chose to test configuration C, which had the best final accuracy, on a randomly sampled
subset of 1000 images from our dataset. Figure 5 shows the best predictions from the model belonging
to the two classes - “Top” and “Bottom” as well as ground truth, or more accurately, actual class of
each image. While there are some misclassifications in each set of predictions, it is easy to see some
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of the visual cues that the model is learning. For instance, soft lighting seems to improve likability
compared to photos displaying washed out or garish colors.

6 Conclusion and Discussion

We have presented a method to automatically generate labels from the metadata of social media
images. We trained a convolutional neural network to learn features from the images that are
representative of the likability of the image. We conclude by discussing ways of overcoming the wide
variation in our score variable.

One way of improving the generalizability of our model would be to use more data. We primarily
focused on the top and bottom decile for our experiment, but it is also quite likely valid to include the
top and bottom two or three deciles. Doing so would certainly provide more data, although we are
not sure exactly how it would affect the accuracy of the labels.

Another limitation of our approach lies in the scope of the factors used to calculate the score for
each image. We wish to simply determine how many people liked an image after seeing it, although
view count is not a metric Instagram’s website provides. Additionally, future work could take into
account other information like the comments Instagram users make on an image. Finally, it would be
interesting to see if this work can be extended to incorporate more than two class labels or perhaps a
continuous score with less unexplained variation than the score we calculated in this paper.
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